Invest in yourself by pursuing a master's in engineering data analytics and statistics. Graduate with the knowledge, skills and personal network you'll need to join the next generation of elite data analysts. 

The Master of Science in Engineering Data Analytics and Statistics (MSDAS) is an academic master's degree designed for students interested in gaining advanced expertise in the use and application of cutting-edge software and analytical tools to collect, analyze, model and optimize data. This interdisciplinary field is at the intersection of systems science, mathematics, and computer science and engineering, all of which are required in the rapidly changing world of analytics and data science. 

Employer demand for analytics-enabled graduates continues to grow. Students upon graduation have gone to work in industry as researchers, analysts and software engineers at companies such as; Amazon, Bayer, Bosch, Citigroup, Deloitte Consulting LLP, The Federal Reserve, and GE.

Suggested Academic Requirements for Prospective Students

It is recommended that incoming students earn a baccalaureate degree in engineering or another STEM-related degree. In earning that degree, it is recommended that students take the following upper-level courses:

  • Calculus Sequence and Differential Equations
  • Probability and Statistics
  • Matrix Algebra
  • Introductory Computer Science

More advanced topics in Computer Science such as Data Structures are also helpful, but may be added after admission to the program.

Knowledge of a scientific or quantitative social science field is encouraged but not necessary for success in the program.

Degree Requirements for Current Students

Students pursuing the Master of Science in Engineering Data Analytics & Statistics (MSDAS) must complete a minimum of 30 units of study (which may include optionally 6 units for thesis) consistent with the residency and other applicable requirements of Washington University and the McKelvey School of Engineering and subject to the following departmental requirements:

  • A minimum of 15 of the total 30 units must be selected from the Degree Requirement list below for core electrical engineering subjects taught by the Department of Electrical & Systems Engineering (ESE)
  • A maximum of 6 credits may be transferred from another institution and applied toward the master's degree. Regardless of the subject or level, all transfer courses are treated as electives and do not count toward the core requirements for the degree.
  • ESE 5980 Electrical & Systems Engineering Graduate Seminar must be taken by full-time graduate students each semester. This course is taken with the unsatisfactory/satisfactory grade option.
  • The degree program must be consistent with the residency and other applicable requirements of Washington University and the McKelvey School of Engineering.
  • The remaining courses in the program, listed in the Degree Electives list below, may be selected from senior or graduate-level courses in ESE or elsewhere in the university.
    • Courses outside of ESE must be in technical subjects relevant to electrical engineering and require the department's approval.
    • Undergraduate Laboratory courses may not be used to satisfy this requirement.
  • Students must obtain a cumulative grade-point average of at least 3.0 out of a possible 4.0 overall for courses applied toward the degree. Courses that apply toward the degree must be taken with the credit/letter grade option.
  • Refer to the University Bulletin for the specific requirements for this degree. Archived bulletins are available for those who were admitted to the program prior to the current academic year.

Either a thesis, project or a course option may be selected. The special requirements for these options are as follows:

  • Thesis/Project Option: This option is intended for those pursuing full-time study and engaged in research projects. Candidates for this degree must complete a minimum of 24 units of course instruction and 6 units of thesis research (ESE 7998) or master's project (ESE 7970); three of these units of thesis research or project credit may be applied toward the 15 core electrical engineering units required for the MSEE program. Any of these 6 units may be applied as electives for the MSEE, MSSSM and MSDAS programs. Students must complete the requirements for the thesis and project as outlined in the MS student handbook
  • Course Option: Under the course option, students may not take ESE 7998 Master's Research or ESE 7970 Master's Project. With faculty permission, they may take up to three units of graduate-level independent study (ESE 5999).

Required Courses (15 units) 

Course Number Course Name

ESE 4170
CSE 4107
CSE 5107

Introduction to Machine Learning and Pattern Classification or 
Introduction to Machine Learning or
Machine Learning

ESE 4150
ESE 5130

Optimization or
Large Scale Optimization for Data Science

ESE 5200 Probability and Stochastic Processes 
ESE 5240 Detection and Estimation Theory 
ESE 5971 Practicum in Data Analytics and Statistics 

Degree Electives (9 units)

Course Number Course Name
SDS 4020
SDS 4155
SDS 4130
SDS 4210
SDS 4310

Mathematical Statistics
Time Series Analysis
Linear Statistical Models
Statistical Computation
Bayesian Statistics

CSE 4102
CSE 4207
CSE 5104
CSE 5105
CSE 5107

Introduction to Artificial Intelligence
Cloud Computing with Big Data Applications
Data Mining
Bayesian Methods in Machine Learning 
Machine Learning*

ESE 4261
ESE 4270
ESE 5130
ESE 5230
ESE 5510

Statistical Methods for Data Analysis with Applications to Financial Engineering
Financial Mathematics
Large-Scale Optimization for Data Science*
Information Theory
Linear Dynamic Systems 1

* This course can be taken as an elective if it is not taken to satisfy a requirement. 

Free Electives (up to 6 units)

Any course numbered 4001 or greater in the Engineering (with the prefix of BME, CSE, EECE, ESE, or MEMS), Physics, Statistics & Data Science or Mathematics department, excluding the exceptions listed below, are approved by the department as electives.

Additionally, Finance courses FIN 5017, FIN 5506, and FIN 5370 as well as courses with a DAT designation and number of 5000 or above, except for DAT 5561, may be used as free electives.

Students may take either ESE 4170 or CSE 4107, but they may not use both as electives for the degree.
For students who have already taken ESE 3180 and ESE 3190, ESE 5010 may not be used as an elective for graduate credit.

Additionally, the following courses are NOT approved by the department as electives. Requests for an exception to this policy may be submitted to the graduate program coordinator with the approval of the student's academic advisor.

Course Numbers Unapproved Electives
EECE 4520, 4010, 4011, 4100
ESE 435, 465, 488, 4480, 4481 
Undergraduate lab courses
ESE 4999, 4991, 4970, 4971

Any undergraduate research, independent study, senior design or capstone course