
Spiking Neural Networks on FPGAs
CSE462M Spring 2025

Washington University in St. Louis
Ethan Morton, John Walters, Edgar Sarceno

Abstract
Spiking Neural Networks (SNNs) offer a promising path for energy-efficient,

event-driven computation inspired by biological systems. This project demonstrates
a hardware-accelerated implementation of a Leaky Integrate-and-Fire (LIF) SNN
on the PYNQ-Z2 FPGA platform. Our system combines Verilog-based fixed-point
LIF neurons with an AXI4-Lite register interface, enabling precise control and low-
latency data exchange with the Processing System (PS). A FastAPI server run-
ning on the PS exposes a REST interface for configuration and readout, while
a lightweight Python client logs real-time neuron activity over HTTP. We imple-
mented a three-neuron untrained network, configured with synthetic input pulses to
validate core functionality and inter-neuron connectivity. Results show clean spike-
leak behavior, sub-threshold membrane dynamics, and sparse coincidence detection,
all consistent with theoretical predictions. Additionally, resource analysis revealed
a significant reduction in LUT and FF usage by transitioning from Q16.16 to Q2.6
fixed-point arithmetic. This work validates the feasibility of low-resource SNN hard-
ware and provides a scalable foundation for future neuromorphic experiments on
FPGA platforms.

Contents

1 Introduction 3
1.1 Spiking Neurons . 3
1.2 Spiking Neural Networks . 5

2 Methods 6
2.1 Tooling . 6
2.2 Overall Design . 6
2.3 PS-PL Communication using AXI4-Lite 7
2.4 AXI-SNN Communication . 7
2.5 PC-PS Communication . 8

2.5.1 Live Plotting . 8
2.5.2 Static Analysis . 8

3 Results 10
3.1 Graphing Neuron Potential . 10
3.2 Resource Usage . 15

4 Conclusions 16

5 Deliverables 17
5.1 Completed Deliverables . 17
5.2 Uncompleted Deliverables and Reasons . 17
5.3 Process and Workflow Improvements . 18

Spiking Neural Networks on FPGAs Morton, Walters, Sarceno

6 Timeline 18

7 Table of Responsibility 19

2

Spiking Neural Networks on FPGAs Morton, Walters, Sarceno

Figure 1: A simple image depicting the connection of two biological neurons. Obtained
from [Goodman, 2023]

1 Introduction

In recent years, the fields of machine learning and "AI" have grown considerably. What
started as simple Multi-Layer Perceptrons (MLPs) are now complicated network archi-
tectures that can capture hidden semantic meanings and perform operations with them.
As the field has matured, many different methods for applying machine learning concepts
have arisen. Among them is the use of biologically-centered neuron and network models
which attempt to capture the magic of the human brain. These models are called Spiking
Neural Networks (SNNs).

1.1 Spiking Neurons

SNNs are built off a slightly different fundamental building block than the neural networks
you may hear about in the news. Other than recurrent neural networks which leverage self-
connected neurons to maintain state during inference, most classical neural networks do
not have state. Each "neuron" is just a placeholder for the numbers to flow through. The
information resides in the weights obtained by intensive training. These weights are then
used as a "black box" that you feed inputs into and then receive an output. Disregarding
some mathematical subtelties about probability, each input maps to a specific range of
outputs.

However, in SNNs and spiking neuron models, that is not the case. Each individual
neuron does have a physical state. That state is external to the current computation,
and is updated based on time. This makes SNNs more like a real-time simulations than
a black-box computation. Each neuron in an SNN is intended to emulate or simulate a
real neuron, just like the ones in the human brain. There are many models for biological
neurons that can be used, but they all have a few basic traits in common.

The main feature is the neuron’s electrical potential. This is the measure of how much
charge has accumulated inside a neuron. In real human brains, it has been found that
neurons communicate by building up charge from their inputs, and then once a specific
charge threshold is reached, releasing that charge in one fell swoop to its outputs. That
near-instantaneous release of charge is called a "spike," hence the name "spiking neurons."
At it’s base level, each neuron is essentially just an accumulator. It accumulates charge,
until it hits a specific biological threshold, and then pushes the charge out in a burst. In
the human brain, millions and billions of spikes will happen just by reading this paper.

Biological neurons are connected through two main structures: the dendrites and the

3

Spiking Neural Networks on FPGAs Morton, Walters, Sarceno

Figure 2: A graphic showing a more detailed physical neuron structure. Obtained from
[Goodman, 2023]

axons. The dendrites are the mess of spiky prongs sticking out of the nucleus of the
neuron, as seen in fig. 1. These dendrites are the input channel that accumulates from
any connected neuron. The axon is the long, skinny part of each neuron. The axon is
the output channel that transmits the stored charge to other neurons. In fig. 1, we see a
simple model of how neurons connect to each other, axon to dendrite. A neuron may have
more than one incoming connection, and more than one outgoing connection, though the
specifics of how that works is much more complex. A slightly more detailed view of a
neuron can be seen in fig. 2, which includes a more detailed biological description of the
cell type.

The exact mechanics and theoretical variations of how that charge is released and how
it is gathered is beyond the scope of this project, but suffice it to say, there are plenty, and
they are as complicated as they are plentiful. A simple model to use as a basis for this
project is called the Leaky Integrate-and-Fire (LIF) model. This model is just as simple
as it sounds. This model has two main update rules: 1) the potential decays over time
(this is the leaky" part) 2) if the potential crosses a specified threshold it fires ("spikes")
The neuron is modeled intuitively with a simple differential equation, shown below in
eq. (1).

τ
dv

dt
= −v (1)

Solving this, we arrive at a simple equation of exponential decay over time, shown
in eq. (2). Due to the "spikey" nature of how the threshold works, there is not a clean
mathematical way to put that in the equation, so it is done by just checking on each
update.

v(t) = voe
− t

τ (2)

The setting of vo is arbitrary, and more meaningfully represents the previous timestep.
When neurons are simulated in a computer, there must be discrete timesteps taken, and
as a result, the decay factor becomes a simple multiple of the previous potential. Our
equation becomes a discrete time equation, and looks something more like eq. (3), where
DF is the decay factor found by plugging a value for τ into the exponential of eq. (2).

4

Spiking Neural Networks on FPGAs Morton, Walters, Sarceno

Figure 3: An example of a spiking neural network that was produced by using evolutionary
algorithms through many iterations. Obtained from [Goodman, 2023]

v(n) = DF · v(n− 1) (3)

1.2 Spiking Neural Networks

Just as classical perceptrons can be orchestrated into complex networks with many inter-
connections, so can these biologically-based spiking neurons. Due to their relative recency
compared to classical neural networks, there are not many agreed upon architectures for
use such as transformer models, diffusion models, etc. As a result, many networks are
arbitrarily constructed, or evolutionary machine learning techniques are employed. In
either case, the network often ends up looking somthing like fig. 3.

Compared to modern neural networks such as transformers, it seems appallingly sim-
ple, and it is difficult to tell where the information flows. This is another result of spiking
neurons being more similar to a simulation than to a black-box computation. Instead of
simply receiving an output that we then interpret, we must perform real-time analysis of
the state of the network to determine what the network is understanding and processing.

There are many different methods for understanding how a network reacts to outside
stimuli. A simple way is to simply look at the rate of spiking. Similar to how if the
number produced for a neuron in a classical network is large then we call it "activated", if
a spiking neuron is spiking very often, then it is "active." Though the process of training is
outside the scope of the report, training is when specific neurons would be selected to act
as "decision" neurons, meaning they are the output. This is easiest to see by looking at a
tutorial posted in the snnTorch documentation [Eshraghian, 2021] that uses the standard
MNIST handwritten digits and attempts to classify which digit is written.

There are as many input neurons as pixels in the image. Each input neuron is assigned
a rate at which to spike based on the darkness of the pixel. In real scenarios, the inputs

5

Spiking Neural Networks on FPGAs Morton, Walters, Sarceno

will often be handled this way to act as a signal driver for the network, just as the small
bones in human ears act as stimuli for the brain. The decision neurons are probed to
determine which digit is detected by the network. +

2 Methods

Though there are many models and analysis methods available to try and understand
and implement a simple SNN, we chose to keep it simple. Throughout this project, we
used the LIF model for neurons, as it was the simplest to use and still produce interesting
results. We also chose to encode "information" in the spiking rate of the neurons, in order
to keep things easily interpretable.

2.1 Tooling

We were provided hardware and software for this project. The hardware was a PYNQ-Z2
FPGA development board made by Xilinx. This is an effective tool, with both a built-in
ARM processor representing the Processing System (PS), and a small FPGA to implement
custom Programmable Logic (PL) on. There is also built-in AXI compatibility with the
FPGA, which can easily be called from languages such as Python. The software used was
Xilinx Vivado, for custom HDL development. The reason for using Vivado rather than
an HLS tool such as Vitis was the exploratory nature of our project. A large portion of
this project consisted of research into how spiking neurons and SNNs worked, and as a
result, we wanted to be able to have control over every aspect of the logic, rather than let
it be abstracted away.

2.2 Overall Design

Our spiking neural network system is composed of three tightly integrated subsystems:
the host PC, the Processing System (PS) on the PYNQ-Z2 board, and the programmable
logic (PL) fabric. The host PC runs a lightweight client—implemented in MATLAB or
Python—which issues HTTP requests for network control (e.g. start/stop, spike-rate ad-
justments) and visualizes membrane potentials in real time. The PS hosts a FastAPI
server that exposes RESTful endpoints corresponding to control registers in the PL,
and uses PYNQ’s Overlay API along with a memory-mapped I/O interface (MMIO) to
translate HTTP calls into AXI4-Lite transactions. The PL implements the two-neuron
leaky integrate-and-fire network in Verilog, exporting all control inputs and neuron state
through an AXI4-Lite slave peripheral.

When the host client issues a command—such as calling /enable to toggle updates,
/n1_rate or /n2_rate to set synthetic input divisors, or /read to sample membrane
potentials—the PS performs the following sequence:

looks up the base address from

base_addr = int(overlay.ip_dict["axi_lite_slave_0"]["parameters"]["C_BASEADDR"], 0)

and instantiates

mmio = MMIO(base_addr, 0x1000)

to execute

6

Spiking Neural Networks on FPGAs Morton, Walters, Sarceno

mmio.write(offset, value) % control writes
pot = mmio.read(0x0C) % read neuron potential

All register accesses complete within a few FPGA clock cycles, yielding sub-microsecond
latency suitable for real-time closed-loop experiments.

Inside the PL, the neuron update logic applies exponential decay and threshold com-
parison on every update tick. Control registers are mapped at offsets 0x00 (update_enable),
0x04 (n1_stop_val), and 0x08 (n2_stop_val); the current membrane potential (an 8-
bit Q2.6 fixed-point value zero-extended to 32 bits) is read from offset 0x0C. A compact
AXI4-Lite FSM handles all handshakes, while a combinational multiplexer selects the
correct register data for readback. This register-oriented design ensures deterministic,
low-overhead communication between the PS and PL and simplifies integration with the
host REST API.

2.3 PS-PL Communication using AXI4-Lite

The AXI4-Lite slave in our PL implements two dedicated finite-state machines (FSMs) to
manage all bus transactions with minimal logic and latency. On the write side, the Write
FSM sequences through the typical AXI4-Lite handshake phases: it asserts AWREADY only
once AWVALID is seen, then waits for WVALID before capturing the write data and address;
finally, it drives BVALID and the OKAY response once the data has been committed to
the target register. This tightly controlled state progression ensures that control regis-
ters—such as update_enable, n1_stop_val, and n2_stop_val—are updated atomically
on each valid transaction, preventing spurious or partial writes.

On the read side, a complementary Read FSM handles every incoming read request.
When ARVALID is asserted by the PS, the FSM latches the read address and immediately
deasserts ARREADY to throttle new requests until it can present valid data. Once the target
register’s value is available—whether it be the clock divider state or the current neuron
potential—the FSM drives RDATA, asserts RVALID, and signals an OKAY response. After
the PS deasserts RREADY, the FSM returns to its idle state, ready to service the next read
cycle.

A small combinational data multiplexer sits alongside these FSMs to steer the cor-
rect 32-bit register out on the read data bus. Based on the latched address, it selects
between the control/status registers (update_enable, n1_stop_val, n2_stop_val), the
programmable clock-divider count, or the live Q2.6-encoded membrane potential. This
approach avoids adding extra clock cycles or logic depth, since the multiplexer output
simply feeds into the final read-data register of the Read FSM.

Finally, we incorporate a 32-bit programmable clock divider into the same AXI4-Lite
framework. Its divisor register is written via the Write FSM, and the divider counter
itself ticks every system clock. When the counter overflows, it pulses the neuron-update
logic and resets; the counter value can be read by the PS to calculate precise polling
intervals. Because the clock-divider register and counter state share the same bus and FSM
mechanisms, we achieve sub-microsecond reconfiguration without extra clock domains or
complex timing constraints.

2.4 AXI-SNN Communication

The AXI peripheral side of the PL is able to communicate with the SNN side of the PL
through a few main data and control signals. There are two 32-bit data buses that go

7

Spiking Neural Networks on FPGAs Morton, Walters, Sarceno

between the AXI and SNN PL. One is the "addr" bus, and the other is the "data" bus.
When the AXI peripheral places pushes a 32-bit address onto the addr bus, the SNN will
immediately (combinationaly) place one of the three neuron potentials onto the bus, with
the first 24 bits being zeros and the last 8 being the Q2.6 fixed point decimal number
representing the neuron potential at that moment in time.

There is also an assortment of control signals to be used. The standard enable and
reset control signals are included, as well as a separate "update_enable" signal, and two
32-bit input signals called "n1_stop_val" and "n2_stop_val." The update_enable signal
controls whether or not the neuron update logic runs. If the signal is high, then the neuron
potentials will update. If the signal is low, then they will not update. Having a separate
enable signal for update logic versus the entire network enables better separation between
the internal bus/latching, logic and the business logic of constructing and simulating the
neurons.

The stop values correspond to how often the synthetic inputs to the two input neurons
are fired. Each value is the number of update ticks (not clock ticks, update ticks) that
pass by between firing the synthetic inputs. When the number of update ticks since the
last firing matches the value on the corresponding stop_val input, that input will fire
and reset it’s internal counter to zero. Each input has it’s own value, allowing easily
customizable firing rates that can show differences in spiking rate.

2.5 PC-PS Communication

Efficient control and data exchange between the host computer (PC) and the Process-
ing System (PS) on the PYNQ-Z2 board are crucial for configuring the spiking-neuron
core and retrieving membrane-potential traces. Two complementary software paths are
employed: a MATLAB-based visual interface for live monitoring and a Python-based
FastAPI client–server stack for scripted acquisition. The following subsections outline the
implementation of each path.

2.5.1 Live Plotting

Live plotting of the neurons was accomplished using Matlab, because there were issues
with running an interactive plot using matplotlib through WSL2. The live plotting was
accomplished by preparing three buffers to hold the neuron potentials for our three neurons
and then polling the REST API periodically to add values to the buffers. The control
signals are polled at startup and every time a button is pressed to update them, but
nowhere else, so it is possible for the client state to become out of sync with the actual
SNN state if there are multiple clients attempting to send control signal requests at the
same time. A demonstration of the live system in action can be found at this link(if this
link is broken and you need to see the video, email me at e.a.morton@wustl.edu and I can
send you the video file upon request).

2.5.2 Static Analysis

While the live MATLAB client provides an oscilloscope-style glimpse of membrane po-
tentials, our static pipeline captures long, loss-less traces for post-processing in Python.
The workflow relies on two scripts:

1. FastAPI.py – executed on the PYNQ–Z2 processing system.

8

https://gowustl-my.sharepoint.com/:v:/g/personal/e_a_morton_wustl_edu/EaRb1zHAiqJLjbq-WDCJz5QBO43CXo0goJmo3OJ1vxU0bA?nav=eyJyZWZlcnJhbEluZm8iOnsicmVmZXJyYWxBcHAiOiJPbmVEcml2ZUZvckJ1c2luZXNzIiwicmVmZXJyYWxBcHBQbGF0Zm9ybSI6IldlYiIsInJlZmVycmFsTW9kZSI6InZpZXciLCJyZWZlcnJhbFZpZXciOiJNeUZpbGVzTGlua0NvcHkifX0&e=kAe0c3

Spiking Neural Networks on FPGAs Morton, Walters, Sarceno

2. Testing_API_2.py – executed on the host PC and streams data to a .csv file.

Snapshot endpoint The FastAPI service already exposes single-neuron read routes
(/neuron1, /neuron2, /neuron3). For high-resolution logging a vectorised /snapshot
route was added which reads all three membrane-potential registers and a global update
counter in a single AXI transaction:

@app.get("/snapshot")
def snapshot ():

raw1 = mmio.read(N1_ADDR)
raw2 = mmio.read(N2_ADDR)
raw3 = mmio.read(N3_ADDR)
clock = mmio.read(CLOCK_ACCUM_ADDR)
return {"v1": raw1 , "v2": raw2 , "v3": raw3 , "clock": clock}

Figure 4: Vector snapshot route returning simultaneous Q2.6 readings.

All values are returned in raw 8-bit Q2.6 format and converted off-board to preserve
full precision.

Acquisition client Testing_API_2.py performs three roles:

1. Board setup – arms the neuron core through /run and programs the hardware clock
divider via /clock_target/{divider}.

2. Timed acquisition loop – polls /snapshot at an interval

Tloop =
divider
ffabric

× 0.18,

oversampling each neuron update by roughly 5.5× while keeping HTTP overhead neg-
ligible.

3. Optional stimulation – issues a /stimulate pulse every 5s to provoke deterministic
spikes (disabled for the results presented in this report but retained for future work).

During each poll the script converts the raw register byte to volts using the helper in
Listing 5. Results are appended to a timestamped .csv whose header is timestamp_ms, stim,
v1, v2, v3. A SIGINT handler flushes and closes the file cleanly to avoid partial records.

def q26_to_float(raw32: int) -> float:
raw8 = raw32 & 0xFF # isolate low byte
if raw8 & 0x80: # s i g n extend if negative

raw8 -= 0x100
return raw8 / 64.0 # Q2.6 -> divide by 2**6

Figure 5: Local Q2.6 decoder mirroring bin2q26() on the board.

9

Spiking Neural Networks on FPGAs Morton, Walters, Sarceno

Data products The resulting comma-separated log (typically 3–5 MB for a one-minute
run) forms the backbone of all static plots in Section 3. Because every hardware tick is
archived, we can subsequently

• reconstruct spike rasters, inter-spike-interval (ISI) histograms, and voltage distribu-
tions;

• verify coincidence detection by aligning V3 spikes with V1 and V2 events;

• benchmark REST latency by differencing successive clock fields.

By decoupling acquisition from visualisation, long experiments can run unattended on
the FPGA while analysis proceeds later on any machine with Python support.

3 Results

The following analyses quantify both functional correctness and hardware efficiency of the
FPGA-based spiking neural network. First, time-domain and event-based plots derived
from the static-analysis pipeline illustrate membrane dynamics and spike statistics for
three interconnected neurons. Subsequent figures examine the utilisation of core FPGA
resources as network size scales, providing guidance for future expansions and optimisation
strategies.

3.1 Graphing Neuron Potential

Fixed–point membrane potentials were logged for a 55s run at a hardware–paced update
period of 150ms (cf. Section 2.5.2). The following figures present the recorded traces.

Figure 6: Neuron 1 membrane potential with a dashed threshold at 1V. Each vertical
excursion above threshold constitutes a spike; the exponential decay that follows confirms
correct implementation of the leaky term in the LIF model.

10

Spiking Neural Networks on FPGAs Morton, Walters, Sarceno

Figure 7: Scaled view of one inter-spike interval for Neuron 1. The discrete step pattern
reflects the 8-bit Q2.6 arithmetic, while the monotonic descent illustrates leak-only dy-
namics in the absence of stimulation.

Figure 8: Neuron 2 exhibits identical threshold and decay parameters, but a lower external
stimulus rate, leading to a longer inter-spike period (1.5s).

11

Spiking Neural Networks on FPGAs Morton, Walters, Sarceno

Figure 9: Neuron 3 integrates weighted spikes from Neuron 1 and Neuron 2 only. Irregular
supra-threshold events corroborate the coincidence-detection objective of the design.

12

Spiking Neural Networks on FPGAs Morton, Walters, Sarceno

Figure 10: Superimposed traces of all three neurons. Divergent firing patterns arise exclu-
sively from differing input schedules and synaptic weights; intrinsic decay and threshold
constants are shared.

13

Spiking Neural Networks on FPGAs Morton, Walters, Sarceno

Figure 11: Histogram of every sampled voltage. The pronounced peak at 0V reflects the
reset state; the broad cluster between 0.3V and 0.8V represents sub-threshold integration.
Sparse tails above 1V correspond to true spikes.

Figure 12: Spike-train raster condensed over the full acquisition window. Regular rows
for V1 and V2 verify periodic stimulation; sporadic dots for V3 occur only when upstream
spikes coincide within the designed temporal window.

14

Spiking Neural Networks on FPGAs Morton, Walters, Sarceno

Figure 13: Inter-spike–interval (ISI) distributions. Narrow peaks at 1s (V1) and 1.5s
(V2) affirm externally imposed periods, whereas V3 exhibits a broad mode centred at 9s,
consistent with the coincidence-detection requirement.

Conclusion of Static Analysis The collected traces validate the correct hardware
realisation of the Leaky Integrate-and-Fire equations: (i) exponential leakage between
spikes, (ii) deterministic firing at the programmed stimulus periods for input neurons,
and (iii) sparse, coincidence-driven firing for the down-stream integrator. Histogram and
ISI analyses further confirm that spiking activity is both event-driven and energy-efficient,
with the hardware remaining in its low-power reset state for the majority of the run.

3.2 Resource Usage

An important facet of FPGA development is resource usage. How many LUTs, FFs, DSPs,
etc, are used is critical to maintaining speed and efficiency throughout a computation.
Early in our development cycle, we saw high resource usage with even just one neuron,
up to 13% of LUTs used. This was a result of the neuron arithmetic being computed as
32-bit fixed point arithmetic, specifically, Q16.16. After further looking into SNNs and
the necessity of high-precision arithmetic, we dropped the precision all the way down to
Q2.6, which significantly reduced the resource usage. In figs. 14a and 14b we can see a
visual representation of the resource usage as a function of the number of neurons.

There is approximately 28 LUTs used per neuron, with a base cost of roughly 670 LUTs,
and approximately 9 FFs used per neuron, with a base cost of roughly 1051 FFs. These
numbers represent roughly 1% of the total resources of even the small FPGA we were

15

Spiking Neural Networks on FPGAs Morton, Walters, Sarceno

(a) Graph of the LUT usage as a function of
the number of neurons instantiated.

(b) Graph of the FF usage as a function of the
number of neurons instantiated.

Figure 14: Graphs of resource usage as a function of the number of neurons instantiated.

provided. The number of neurons can easily scale into the hundreds or thousands with
minimal optimization. When resources become an issue, the more complicated blocks,
such as the DSP multiplication blocks created in the internal update logic for each neuron,
can be shared across multiple neurons while decreasing the overall update speed of the
network. Though this is a tradeoff, it is much better to be able to run larger networks
at slower speeds than to only be able to run small networks at slower speeds, just like
with classical neural networks. There are many more optimizations that could be made
as the number of neurons scales up, including sharing of parameters by moving it to an
input, and by allocating block RAM to hold values rather than allowing Vivado to try
and implement thousands of single-bit FFs.

4 Conclusions

This report presented a complete, FPGA-resident prototype of a Leaky Integrate-and-Fire
spiking neural network, together with a host–to–device software stack for configura-
tion, data capture, and analysis. The implementation combined hand-written Verilog
neurons, an AXI4-Lite control peripheral, and a Python/FastAPI interface, enabling
sub-microsecond register access and sustained, loss-less logging of membrane potentials.
Experimental traces confirmed the expected exponential leak, deterministic firing for ex-
ternally driven neurons, and coincidence-triggered activity in a post-synaptic integra-
tor. Transitioning from Q16.16 to Q2.6 fixed-point arithmetic reduced per-neuron logic
utilisation to approximately 28 LUTs and 9 FFs, permitting hundreds of neurons to fit
comfortably within the resource envelope of the PYNQ-Z2 fabric.

These results demonstrate that biologically inspired, event-driven computation can be
realised on low-cost FPGAs with modest resource budgets and without sacrificing tempo-
ral fidelity. The separation of concerns—hardware neurons, register-mapped control, and
REST-based monitoring—offers a flexible template for future neuromorphic studies.

Future Directions

• Network Scaling. Parameterising the neuron module and automating instantiation
would allow network sizes in the 103–104 range; shared multipliers or time-multiplexed
update logic could further lower the per-neuron cost.

16

Spiking Neural Networks on FPGAs Morton, Walters, Sarceno

• On-chip Plasticity. Incorporating spike-timing-dependent plasticity (STDP) or reward-modulated
learning would convert the platform from inference-only to adaptive processing.

• Power Characterisation. Direct measurement of dynamic power during sparse versus
dense firing would quantify the energy-efficiency gains commonly attributed to SNNs.

• High-Level Synthesis. Exploring HLS or Python-based HDL generators could accel-
erate design iterations while retaining the deterministic timing required for neuromor-
phic workloads.

• Edge Integration. Coupling the network with sensor front-ends—event cameras,
microphone arrays, or bio-signal interfaces—would showcase the latency and power
benefits in real-time edge applications.

Collectively, these extensions would transform the current proof-of-concept into a ver-
satile research platform, capable of evaluating large-scale SNN architectures and on-device
learning algorithms under realistic resource-constraint and latency conditions.

5 Deliverables

As stated in our formal proposal, the project’s anticipated deliverables were

1. A deep description of how information is processed in spiking neural networks
(SNNs) and the theoretical effectiveness of the strategies we implement.

2. A tool to synthesize Verilog code representing an SNN (hard-coded) or a Verilog
library capable of dynamically instantiating arbitrary SNN topologies.

3. An analysis of resource usage per neuron (LUTs, FFs, DSPs, etc.) along with
strategies for optimizing utilization as network size scales.

5.1 Completed Deliverables

• SNN Description (Deliverable 1). We provided a comprehensive background
and mathematical treatment of Leaky Integrate-and-Fire neurons in Sections 1
and 2, including system-level diagrams and the REST/AXI-Lite control architec-
ture.

• Resource Usage Analysis (Deliverable 3). In Section 3.2, we presented em-
pirical graphs of LUT and FF usage versus neuron count (Figure 4), and discussed
precision/format trade-offs (Q16.16 → Q2.6) to reduce resource footprints.

5.2 Uncompleted Deliverables and Reasons

• Verilog Synthesis Tool (Deliverable 2). We did not develop an automated
HDL generator or dynamic Verilog library. Instead, we manually instantiated a
three-neuron network in Verilog. This scope reduction arose from:

1. Underestimating the complexity of the AXI4-Lite FSM integration, which con-
sumed our available FPGA development cycles.

17

Spiking Neural Networks on FPGAs Morton, Walters, Sarceno

2. Extended debugging of the PS-PL RESTful/MMIO interface, which delayed
higher-level tooling work.

3. Prioritizing a working proof-of-concept over broader tooling features to meet
semester deadlines.

5.3 Process and Workflow Improvements

Reflecting on our experience, the following changes could streamline future projects:

• Parallelize Hardware and Tooling. Assign separate sub-teams for HDL integra-
tion versus code-generation tooling, with regular sync points to avoid bottlenecks.

• Early Adoption of HLS or Code-Gen Frameworks. Evaluate high-level syn-
thesis (HLS) or Python-based Verilog generators at project kickoff to reduce manual
HDL burden.

• Continuous Integration for FPGA Builds. Automate bitstream generation
and AXI interface testbenches to catch integration regressions early.

6 Timeline

Figure 15: Gantt chart comparing planned versus actual timeline for the SNN-on-FPGA
implementation.

As shown in Figure 15, we met our early milestones with minimal slip. These accom-
plishments provided confidence in both our custom PL logic and the RESTful control
infrastructure.

However, the AXI/API Communication phase—during which we designed and inte-
grated our custom AXI4-Lite slave—took significantly longer than anticipated. The added
effort required to implement robust FSM-based handshaking and atomic register updates
caused this task to overrun by nearly all of its allotted duration. As a direct result, sub-
sequent tasks (SNN Design/Training and Full API Implementation) were either deferred
or only partially completed.

Moreover, our original plan called for offline training of a larger, multi-neuron spiking
model. Due to the extended AXI4-Lite development and overall time constraints, we did
not perform any model training. We therefore scaled back to a three-neuron LIF network

18

Spiking Neural Networks on FPGAs Morton, Walters, Sarceno

with fixed thresholds and decay constants, and did not implement the broader neuron
array originally envisioned.

7 Table of Responsibility

Member Sections
Ethan 1, 2, 2.1, 2.4, 2.5.1, 3.2, 7
John 2.2, 2.3, 5, 6
Edgar 2.5, 2.5.2, 3, 3.1, 4

Table 1: Division of report sections among team members.

References

[Eshraghian, 2021] Eshraghian, J. K. (2021). snntorch documentation.

[Goodman, 2023] Goodman, D. (2023). Neuroscience for machine learners.

19

	Introduction
	Spiking Neurons
	Spiking Neural Networks

	Methods
	Tooling
	Overall Design
	PS-PL Communication using AXI4-Lite
	AXI-SNN Communication
	PC-PS Communication
	Live Plotting
	Static Analysis

	Results
	Graphing Neuron Potential
	Resource Usage

	Conclusions
	Deliverables
	Completed Deliverables
	Uncompleted Deliverables and Reasons
	Process and Workflow Improvements

	Timeline
	Table of Responsibility

