
Pedicini and Lombardo 1

CSE 462M Capstone Design Project Final Report

Submitted to Professor Hall and the Department of Computer Science & Engineering

Optimizing Cryptographic Performance and Education:

AES Encryption and FPGA Hardware Acceleration

Group Members:

Gianna Corinne Pedicini

Department of Computer Science & Engineering

B.S. Computer Engineering and B.S. Computer Science

g.c.pedicini@wustl.edu

Isabella Marie Lombardo

Department of Computer Science & Engineering

B.S. Computer Engineering

i.lombardo@wustl.edu

Date of Submission:​ May 2, 2025

Project Duration:​ January 2025 – May 2025

mailto:g.c.pedicini@wustl.edu
mailto:i.lombardo@wustl.edu

Pedicini and Lombardo 2

Abstract

This project addresses the challenge of making modern encryption algorithms more

understandable and accessible by developing an educational platform that demonstrates the

Advanced Encryption Standard (AES) encryption process in real time. The solution features a

web-based interface that accepts user-input plaintext and displays the encrypted output, while

also leveraging a PYNQ-Z2 board to accelerate the encryption process via hardware. The

backend is implemented using the Python Bottle framework, enabling seamless communication

between the front-end interface and the hardware over a REST API. HTML, CSS, and JavaScript

form the interactive frontend within a Jupyter Notebook environment.

The platform integrates both a hardware-accelerated AES pipeline and a software-based

reference model for verification and comparison. Key AES steps such as SubBytes, ShiftRows,

MixColumns, AddRoundKey, and the key expansion algorithm are implemented and validated.

Performance testing showed a significant reduction in encryption time when using the

hardware-accelerated approach compared to the software model, demonstrating the efficiency

benefits of offloading cryptographic computation to an FPGA.

The result is a functional and educational tool that bridges the gap between theoretical

cryptography and practical implementation. By providing real-time feedback, step-by-step

explanations, and performance comparisons, this platform helps users gain deeper insights into

AES and the advantages of hardware acceleration.

Pedicini and Lombardo 3

Introduction

As data leaks continue to make daily headlines, encryption is no longer just an

option—it's a necessity. In this past year alone, the average cost of a single data breach soared to

an all-time high of 4.88 million dollars (“Cost of a Data Breach Report 2024”). From medical

records to confidential government documents, data privacy is essential for individuals,

businesses, and national security alike. The Advanced Encryption Standard (AES) is the

strongest form of protection against these digital attacks, arming itself with a multitude of large,

cryptographic keys and an array of data manipulation techniques (Awati). Maintaining the

highest level of security over digital media, AES encryption is widely employed by the U.S.

government and industry leaders alike for secure data transmission and storage (Awati).

Despite AES encryption's importance, understanding the step-by-step processes involved

in secure encryption remains complex and inaccessible to many learners. Online documentation

of AES often assumes prior familiarity with linear algebra and finite field arithmetic, making it

difficult for novices to grasp. While some tools like CrypTool 2 offer visualizations of

cryptographic algorithms, they often lack interactive, real-time demonstrations that integrate

hardware acceleration, limiting their effectiveness in conveying the practical aspects of

encryption processes (Esslinger). Furthermore, while encryption can be software-driven,

hardware acceleration offers the potential for significant improvements in speed and security —

especially in embedded systems and edge computing — yet practical, interactive demonstrations

of this are limited or non-existent for educational use (Dandass et al.). This gap in understanding

AES encryption and hardware offloading techniques creates an educational void that demands

attention.

Pedicini and Lombardo 4

Problem Statement

To address this gap, this project aims to develop an educational website that provides a

clear, interactive demonstration of the AES encryption process, integrating a PYNQ-Z2 FPGA

circuit board to demonstrate the hardware acceleration of AES encryption. Users will be able to

input plaintext, observe AES-128 encryption, and compare hardware-accelerated results against

software-only implementations in real time. These interactions will be facilitated via a REST

API between the frontend and the FPGA backend. By merging intuitive visualization with

embedded hardware, the project seeks to make advanced cryptographic concepts both accessible

and engaging for educational environments.

Project Objectives and Requirements

The primary objective of this project is to create an interactive educational platform that

illustrates the internal workings of the Advanced Encryption Standard (AES) algorithm while

demonstrating the benefits of hardware acceleration using a PYNQ-Z2 FPGA board. Originally,

the platform was envisioned to include user-inputted keys and to illustrate each step of AES

encryption in a user-friendly and visually engaging manner. The system is intended to serve as a

teaching tool for students, educators, and early learners in cybersecurity and computer

engineering, offering an intuitive and practical experience of symmetric encryption.

At its core, the platform enables users to input plaintext messages before observing the

encryption process unfold. A key feature of the system is its ability to offload encryption

computations to an FPGA board in real time and compare this hardware-based implementation to

a software-only equivalent executed on the host processor. This side-by-side comparison

Pedicini and Lombardo 5

provides users with insight into how hardware acceleration impacts performance, especially in

contexts where large amounts of data must be processed efficiently and securely.

To support these goals, the platform must meet a range of functional requirements. First,

the user interface must be accessible through a web browser, allowing users to explore the

website, enter messages, and request encryption or decryption operations. The system must then

transmit this data to the backend server using a RESTful API. The backend coordinates the

execution of encryption either through Python software routines or by communicating with the

PYNQ-Z2 board to trigger the hardware-accelerated process. Upon completion, the encrypted

ciphertext (or decrypted output, if requested) must be returned to the frontend and clearly

displayed to the user along with metadata such as execution time. This system architecture is

visualized below as a block diagram showing the flow from user input to encryption via software

and hardware paths, with REST API communication between frontend, backend, and PYNQ-Z2

(Figure 1).

Figure 1: System Architecture Block Diagram.

Pedicini and Lombardo 6

The platform must also satisfy several non-functional requirements. In terms of

performance, the FPGA-based encryption should demonstrate quantifiable speed improvements

compared to the software implementation, particularly when running batch operations. Usability

is also paramount: the platform must feature an intuitive, modern interface that guides users

through the encryption process without requiring prior knowledge of hardware systems or

cryptography. Responsiveness is another critical criterion; the interface should respond promptly

to user inputs and function consistently across desktop and tablet devices. The system must also

be scalable in its backend design, ensuring it can support multiple concurrent users without

crashing or lagging, especially in classroom environments or public demonstrations. Security is a

fundamental concern, given that user inputs include plaintext messages; communication between

the frontend, backend, and FPGA must be encrypted and secure. Lastly, maintainability is

essential: the codebase must be modular and well-documented to enable future enhancements,

such as supporting multiple key lengths, user-input keys, or visualizations of user input at each

step of encryption.

Supporting these requirements are the following key design objectives. The first is

educational clarity, breaking down the complex AES process into an engaging, visual experience

that demystifies cryptographic transformations for learners at various levels. The second is

real-time feedback, achieved by allowing users to observe and compare execution times between

hardware and software in a dynamic, transparent manner. The third objective is seamless

hardware integration, such that the underlying FPGA operations remain hidden behind an

intuitive frontend, allowing users to focus on the algorithm rather than the technicalities of

interfacing with hardware. Lastly, the platform prioritizes aesthetic appeal, featuring a polished,

Pedicini and Lombardo 7

modern design that helps maintain user engagement while reinforcing the credibility and

professionalism of the educational experience.

Ethical Considerations

Alongside its technical objectives, the project also acknowledges several ethical

considerations. Since the platform accepts user input for encryption, care must be taken to

prevent data leakage and ensure that user-provided plaintext are not stored or exposed during

processing. A poorly implemented encryption algorithm could mislead learners or create a false

sense of security, making correctness and clarity imperative. Additionally, while the tool is

designed for educational purposes, there remains a risk that it could be misused, such as

obscuring malicious content or facilitating unauthorized communications.

A second ethical concern lies in the accuracy of the encryption algorithm’s

implementation. Since the platform is intended as an educational tool, an incorrectly

implemented AES algorithm could mislead students and potentially propagate misinformation

about how encryption works. This could contribute to a false sense of security, especially if

students or educators mistakenly rely on it for anything beyond instructional purposes. To

address this, the implementation must be thoroughly tested against known AES test vectors to

ensure correctness, and the platform must clearly label itself as an educational demonstration, not

a secure encryption tool for real-world use.

Additionally, the open and accessible nature of the tool raises questions about misuse.

While the goal is to promote understanding of cryptographic systems, there is always a

possibility that someone could use the tool to encrypt malicious content or facilitate unauthorized

communication. Although this risk cannot be fully eliminated, the platform limits exposure by

Pedicini and Lombardo 8

processing data locally in real time and all educational documentation accompanying the tool

will emphasize responsible use, proper context, and ethical handling of encryption technologies.

An ethical dilemma encountered during the development process involved balancing

accessibility with security. The goal of creating a transparent and approachable interface

sometimes conflicted with the desire to restrict misuse. For example, allowing users to enter

arbitrary text or custom keys could offer a more complete learning experience, but also increase

the risk of misuse or data mishandling. To resolve this, initial iterations of the platform restrict

encryption to fixed keys and plaintext lengths to limit scope while ensuring educational

effectiveness. Future updates may revisit this design decision once additional safeguards are in

place.

Finally, inclusivity and accessibility are also part of ethical design. The interface must be

visually accessible, responsive across devices, and free of unnecessary complexity, ensuring that

learners with varying levels of technical background can use the platform effectively. Overall,

this project strives to model ethical responsibility by prioritizing user privacy, technical accuracy,

transparent documentation, and responsible educational practices.

In summary, this project combines software engineering, hardware design, and

cryptographic theory to deliver an educational tool that is both functionally rich and

pedagogically valuable. Through careful attention to performance, usability, and system

robustness, the project aims to lower the barrier to understanding AES encryption while

demonstrating the real-world benefits of hardware acceleration in secure computing.

Pedicini and Lombardo 9

Methods

Our project is deployed on a PYNQ-Z2 board, which contains both a processing system

(PS) and programmable logic (FPGA). The user interface is accessible through a web browser

and features several pages, one of which contains the option to encrypt a user-inputted message

using the FPGA on the board. The website as a whole is maintained in the Jupyter Notebook on

the board. Once the plaintext is received, it is transmitted to the backend, which is implemented

using the Python Bottle framework, via a REST API. Then, the plaintext data is sent to the

FPGA using an AXI4-Stream channel managed by the Direct Memory Access (DMA) controller.

The DMA pulls the plaintext data from DDR memory and sends it to the AES IP block to be

encrypted. The AES IP block then sends the ciphertext to the DMA, which writes it back to the

DDR to be returned to the Bottle server and displayed on the website frontend.

​ Because the goal of this project was to create a working example of AES encryption with

an interactive website, the team’s initial design approach included creating AES encryption and

decryption for testing in Python, creating AES encryption in Vitis HLS that was capable of

processing arbitrarily large data, testing both with each other and a third party website, and

combining that tested work into a single, interactive website that showed intermediate, step-wise

results of encrypting a user-inputted plaintext. Due to limited time and scope, the team was

unable to implement processing arbitrarily large data and sending intermediate results, but they

did send the final ciphertext to the website frontend.

​ The AES algorithm itself is a block cipher that separates data into 16-byte blocks and

encrypts them one at a time. During encryption, each block is arranged into a

column-major-ordered 4x4 array known as the state. The process begins with the plaintext and

the key: the “encryption password” used throughout the process to effectively encrypt the

Pedicini and Lombardo 10

plaintext. There are three versions of AES, each differing in the size of their keys: AES-128,

AES-192, and AES-256. The number refers to the key length in bits. This project focused on

implementing AES-128 over -192 or -256 due to efficiency and simplicity. Further mentions of

AES will implicitly refer to AES-128.

​ The first step of AES is expanding the key to create a key for each round in addition to

keeping the initial key. The key expansion process is visualized in Figure 2 below. RotWord

performs a one-byte left circular shift. SubWord is an application of the AES S-Box to each of

the four bytes of a word (32 bits). Rcon, short for “round constant,” is the sequence of 32-bit

constants XOR’d into the first word of each round key. It is generated in Equation 1 below:

 𝑅𝑐𝑜𝑛[𝑖] = (2𝑖−1) || 0𝑥00 || 0𝑥00 || 0𝑥00

Equation 1: Rcon.

Figure 2: The key expansion algorithm (AES Key Schedule).

Pedicini and Lombardo 11

​ After expanding the keys, each byte of the state is combined with each byte of the

original key using bitwise XOR. This process is identical to the AddRoundKey step, and a

visualization can be seen in Figure 7. For nine of the ten rounds (the total number of rounds will

differ for a different version of AES), the following steps are completed: SubBytes, ShiftRows,

MixColumns, and AddRoundKey.

SubBytes

In the SubBytes step, each byte in the state is replaced with a byte in the substitution box

(S-Box). The S-Box, included in Appendix D, acts as a look-up table and was formulated

specifically for AES encryption. The value of a given byte in the state array is used as the index

to obtain its substitution. Figure 3 visualizes the SubBytes step.

Figure 3: The SubBytes step (Advanced Encryption Standard).

ShiftRows

In the ShiftRows step, each row of the state is shifted to the left a certain number of

times. The first row is not shifted, while the second, third, and fourth rows are shifted one, twice,

and thrice, respectively. Figure 4 visualizes the ShiftRows step.

Pedicini and Lombardo 12

Figure 4: The ShiftRows step (Advanced Encryption Standard).

MixColumns

In the MixColumns step, each column of the state is multiplied with a known matrix c(x).

Figure 5 shows c(x), and Figure 6 visualizes the MixColumns step as a whole.

Figure 5: c(x).

Figure 6: The MixColumns step (Advanced Encryption Standard).

Pedicini and Lombardo 13

AddRoundKey

In the AddRoundKey Step, each byte of the state is bitwise XOR’d with each byte of the

round key generated for that round. Figure 7 visualizes the AddRoundKey step.

Figure 7: The AddRoundKeyStep (Advanced Encryption Standard).

In Round 10, the MixColumns step is omitted.

For the hardware components of the design, Vitis HLS was chosen as the development

environment for the hardware implementation of AES for several reasons. While it was initially

an unfamiliar workspace, it was much easier to design the hardware in C and package it as a

single IP block rather than design it in SystemVerilog. The choice was made to create the AES

implementation as a single IP block because it provided simplicity of integration and easy

testing. Additionally, the environment itself made testing and debugging straightforward, and the

ability to use HLS pragmas, such as loop unrolling and array partitioning, made improving

Pedicini and Lombardo 14

timing simple. Within Vitis HLS, the choice was made to hardcode the large, constant arrays

associated with AES encryption and the encryption key. This eliminated the need for register

writes, and the key is secure within the FPGA. For the data path, the design used a free-running

kernel, which eliminated handshaking, and AXI-stream ports, which aligned well with the size of

the input and output; each was 128 bits, which could be divided into four 32-bit words, which is

the standard data width of the DMA. The block diagram of the hardware design is in Figure 8

below. AesAXIWrapper exposes one s_axilite bundle and two axis ports. These are connected to

the PS via an AXI SmartConnect interconnect and an AXI DMA block for data transfers.

Figure 8: Vivado block diagram of the AES hardware design.

For the software components of this design, the team developed the core in Python within

the Jupyter Notebook on the PYNQ-Z2 board. This had the benefit of a modular structure, which

made testing and development more organized. The backend server was built with Python Bottle

using JSON format, which was chosen for its lightweight integration with Jupyter and efficient

communication between the frontend and backend. The frontend was designed using HTML,

CSS, and Javascript, which were web development languages already familiar to the team.

Pedicini and Lombardo 15

Demonstration Summary

During the final in-class presentation, the team delivered a comprehensive and

professional demonstration of the educational AES encryption platform. The system integrates a

web-based user interface with hardware-accelerated encryption on a PYNQ-Z2 FPGA board,

showcasing both technical functionality and instructional utility.

The demonstration successfully highlighted the platform’s capability to perform AES-128

encryption via two distinct pathways: a software-based implementation written in Python and a

hardware-accelerated implementation written in C and executed on the FPGA. Through the web

interface, plaintext input was submitted by the user, processed in real time via a RESTful API,

and the resulting ciphertext was returned to the frontend and displayed.

Key features showcased included the following: real-time communication between

frontend and FPGA for encryption processing; accurate execution of the AES algorithm on both

software and hardware backends; a responsive and accessible user interface designed for

educational engagement; and visual explanations of the AES process and system architecture.

Although time limitations precluded a full walkthrough of the website, stakeholders were

able to observe the core functionality of the system in action. A link to the public repository,

which includes both the frontend and backend codebases, in addition to a video of a full user

experience, is provided in Appendix A for further inspection.

Additionally, full-page screenshots of the user interface are provided in Appendix B to

document the educational features and design elements of the website. This platform represents a

significant outcome of the project and demonstrates the successful integration of hardware

acceleration, user-focused design, and ethical software engineering principles.

Pedicini and Lombardo 16

Data and Procedures

The only data collection that occurred within this project was for timing analysis. To

determine whether running AES encryption on hardware was faster than running it on software,

Gianna developed a Python script that generates 100 randomized strings, times the software and

hardware encryption of each, and averages the results. Figures 9 and 10 contain the randomized

string generation, the call to the software encryption, and the data transmission for the hardware

encryption. The timing data was acquired by enveloping the software and hardware encryptions

in calls to perf_counter(), which generate “start” and “end” timestamps. The overall time for

each encryption is determined by subtracting the “start” timestamp from the “end” timestamp.

Figure 9: Python code that generates 100 random strings and encrypts them with a software

implementation of AES encryption. Each encryption is marked with a “start” and “end”

timestamp, which determine its overall time.

Pedicini and Lombardo 17

Figure 10: Python code that creates “start” and “end” timestamps around the data

transmission for the hardware implementation of AES encryption. Each encryption is marked

with a “start” and “end” timestamp, which determine its overall time.

Results

The results of the AES encryption performance tests are presented in Figures 11 and 12.

Figure 11 compares the execution time of hardware and software AES encryption over 100

iterations, while Figure 12 shows the average execution time for both implementations across

these 100 iterations.

Figure 11: Execution Time Comparison Over 100 Iterations.

Pedicini and Lombardo 18

Figure 11 above illustrates the execution time of the AES encryption process, measured

in milliseconds, for both the hardware and software implementations over the course of 100

iterations. The data shows that the hardware-based AES implementation significantly

outperforms the software version in terms of time efficiency. Some inputs take more time to

process overall, making the difference in performance more pronounced, with hardware

encryption consistently taking less time to complete each iteration compared to software

encryption.

Figure 12: Average Execution Time Comparison Over 100 Iterations.

Figure 12 presents the average execution time for both hardware and software AES

encryption across the 100 iterations. The average execution time for hardware encryption is

noticeably lower than that of the software version, reinforcing the conclusion that the

hardware-accelerated AES implementation provides substantial speed advantages. The results

Pedicini and Lombardo 19

show that, on average, the hardware implementation performs AES encryption 20 times faster,

making it a more efficient solution for high-throughput applications.

Discussion

The primary objective of this project was to deliver an interactive, educational web

platform that demonstrates hardware-accelerated AES encryption, complete with support for

intermediate-result visualization and arbitrarily-sized data processing. Most of these goals were

met: the website features several educational pages as well as a real-time, interactive encryption

section, which accepts a 16-byte plaintext input, sends it to the FPGA for encryption, and returns

the final ciphertext. While the team was unable to implement sending intermediate results of the

various encryption steps or processing more than one 16-byte block of data within the time

constraints of the project timeline, they did successfully accelerate AES using an FPGA.

Overall, the hardware implementation of AES encryption performed 20 times faster on

average than the software implementation. Additionally, Table 1 and Figure 13 show the resource

utilization of the entire hardware design. The design used only 7.3% of the LUTs and 4.76% of

the flip-flops available on the FPGA, signalling that this is a highly efficient implementation of

AES.

Table 1: Resource utilization report of the hardware implementation.

Pedicini and Lombardo 20

Figure 13: Visualization of resource utilization percentages of the hardware implementation.

This proven speed and efficiency are the main benefits of hardware acceleration, and there are

numerous examples of AES usage where these benefits would make a significant impact. For

example, critical patient data in an emergency care setting could be transmitted that much faster,

potentially saving lives. In addition, the high efficiency allows for a more widespread impact

since one FPGA would be able to contain more than one AES encryptor.

​ Our development methodology revealed various strengths and limitations. Working in

Vitis HLS had the benefit of being able to develop in C, a language the team was more familiar

with than SystemVerilog. Additionally, Vitis HLS pragmas for loop unrolling and array

partitioning made it straightforward to optimize the timing as much as possible. However, Vitis

HLS had an initial learning curve, and late-stage debugging proved challenging. After end-to-end

communication was established, any changes made in Vitis HLS required repackaging the IP

block, re-importing that block into Vivado, and regenerating the bitstream, which was

time-consuming. Using Bottle for the backend server offered the most flexibility when

developing the REST API, but the lack of documentation was a challenging hurdle to overcome.

Developing the website frontend using HTML, CSS, and JavaScript was also straightforward

since the team was familiar with those languages.

Pedicini and Lombardo 21

​ There were several key trade-offs that shaped the final project design. Packaging the

entirety of AES encryption into one IP block simplified integration and allowed for maximum

timing optimizations, but limited granularity and flexibility. In addition, the choice to hardcode

the SBOX, RCON, and key removes the need to write to registers and keeps the key secure

within the FPGA. However, any changes to the key require recompilation.

​ In comparison to peer capstone projects, this project’s hardware accelerator similarly

outperforms a software baseline. This project also used Vitis HLS over Vivado and delivered a

full web-enabled pipeline, which was done by some of the other capstone teams. In addition,

when comparing against other AES implementations, ours offers the same level of correctness

and a decryption option.

​ Future work could address our remaining objectives: extending the AXI4-stream

interface to support larger inputs, returning intermediate results back to the website for deeper

educational impact, and allowing users to input their own AES key. Additionally, support for

AES-192 and AES-256 could be added.

​ Reflecting on the semester, there were several aspects of the project that went well.

Namely, the team worked out a system of dividing work that was highly successful. Given the

different computer systems of the team members, it made sense to delegate the software work

that could be completed remotely to the MacOS user and the hardware work to the Windows

user. Each team member also put in an equal amount of work, making the team dynamic highly

positive. In addition, while the project’s goals evolved and changed throughout the semester,

every milestone was passed successfully, and progress reports aided in ensuring progress was

made incrementally throughout the semester. On the other side, improvements could have been

made in time management and testing efforts. While progress was made over the course of the

Pedicini and Lombardo 22

semester, it could have been made more consistently on a day-to-day basis to avoid unnecessary

stress. Additionally, initial effort was made to build a test suite to robustly test the correctness of

the team’s implementation of AES, but the test suite was not successfully implemented due to

time constraints. Overall, this project deepened the team’s practical skills in software-hardware

co-design and taught lessons in teamwork, best development practices, and the ability to pivot

and adapt to situations. In hindsight, the team would have approached this project with more

research and a more specific initial design. Because this project was larger in scope and

contained unfamiliar components, it would have been beneficial to do more research on the parts

that the team was not as familiar with so that the initial design could have been more thought out.

That way, the pivots and adjustments made to the project may not have been necessary.

Conclusion

The implementation of AES encryption with hardware acceleration has proven to be an

effective method for optimizing performance. Through the comparative analysis of hardware and

software implementations, it is clear that hardware acceleration significantly reduces execution

time, offering a notable advantage in high-throughput applications. This project successfully

demonstrated the practical benefits of hardware-based AES encryption, aligning with the

project's goals to improve cryptographic efficiency. These findings underscore the importance of

leveraging hardware acceleration for computationally intensive tasks, such as encryption, where

speed is a critical factor.

While the current implementation meets the basic project requirements, there are several

areas for future development. One key improvement would be the ability to handle larger,

arbitrarily sized inputs, which would enable more comprehensive timing analysis and

Pedicini and Lombardo 23

demonstrate how the system scales with increasing data sizes. Additionally, integrating the

capability to display intermediate AES encryption steps in real-time on the webpage would

provide an interactive and educational tool for users to better understand the encryption process.

Furthermore, accommodating different AES key sizes, such as 128, 192, and 256 bits, would

enhance the flexibility and applicability of the system, making it suitable for a wider range of

security needs. Addressing these areas would pave the way for a polished, production-ready

product that is scalable, adaptable, and capable of meeting diverse cryptographic requirements.

Deliverables

All deliverables for this project were organized into three milestones, which can be

viewed in the project GANTT chart in Appendix C.

For Milestone 1, the proposed deliverables included a basic website frontend supporting

user input, a working REST API, and bi-directional data transfer between the microprocessor

and the FPGA on the board, resulting in a simple computation being correctly completed on the

FPGA. During the demonstration, the team delivered a website frontend on which users could

input a positive number to be multiplied by two. The user input data was successfully sent

between the microprocessor and the FPGA, where the number was multiplied by two, and sent

back to be displayed on the website frontend. A log of previous requests was also displayed.

Milestone 2 focused on integrating several AES encryption substeps into the

communication framework created for Milestone 1. The proposed deliverables included full

Python implementations of both AES encryption and decryption, implementations of the

SubBytes, AddRoundKey, and key expansion steps within Vivado, an updated website frontend

that accepted a max-16 byte long plaintext, and the same bi-directional data transfer

Pedicini and Lombardo 24

implemented in Milestone 1. It was also proposed that the results of each encryption step

developed in Vivado would be displayed on the website frontend. However, these deliverables

changed during development. The Python-based encryption and decryption were completed as

proposed, and the website and REST API were updated to accept plaintext and display the

ciphertext output. Regarding the hardware, the decision was made to deliver a complete AES

encryption implementation in Vitis HLS. Milestone 1 was completed using Vitis HLS for the

hardware, and since it was de-risked, it made sense to make the switch. Additionally, attempting

to execute the separate data transfers for each encryption step began to delay development, so

rather than demonstrating half of the steps with full communication, the team decided to

demonstrate a full implementation of AES with no communication. During the demonstration,

the team compared the outputs from the Vitis HLS implementation, the Python implementation,

and a third-party AES encryption website to verify the correctness.

The final milestone aimed to transform the existing system into an educational platform

that teaches users the individual steps of AES encryption. The proposed deliverables included a

fully interactive and educational website with user input, where the intermediate results of

encrypting the inputted plaintext would be displayed as an example on each section of the page,

completion of the AES encryption flow in Vivado, and a bi-directional data transfer system that

sends the plaintext to the FPGA for encryption and sends the results of each encryption step back

to the website. Also proposed was the ability to take in and encrypt arbitrary-sized data. Like for

Milestone 2, these deliverables also changed during development. The hardware AES flow was

already completed in Vitis HLS, so the focus was on establishing the data transfer of the

intermediate results as well as the data transfer of arbitrarily large data. As development began

on these features, there were several setbacks that led to the decision to limit the data size to 16

Pedicini and Lombardo 25

bytes and only send the final ciphertext back to the website frontend. During the demonstration,

the team delivered a multi-page educational website, including a page that contained the

interactive encryption experience. The user-inputted plaintext was properly sent to the FPGA for

encryption, and the ciphertext was returned for display on the website. The final completed

deliverables can be found in detail in Appendix B.

Schedule

Figure 14 below contains the GANTT chart outlining the timeline for completion of this

project. Larger images of each section are available in Appendix C. While this initially seemed

like an appropriate timeline for this project, we deviated from it significantly after Milestone 1.

For Milestone 1, we were able to adhere to the timeline as expected. For Milestone 2, we planned

to implement the steps of AES encryption one-by-one, and this timeline reflects that proposed

trajectory. As we began to work on Milestone 2, however, there were several changes we made

to our project that altered this timeline. As aforementioned, the initial goal was to send the

intermediate results of the encryption sub-steps to the processing system to be displayed on the

website frontend. However, this proved to be more difficult than initially expected, so we pivoted

to fully focusing on completing the C implementation of AES encryption that would become the

hardware IP block. For Milestone 2, instead of demonstrating communication between the

processing system and the FPGA for half of AES encryption’s substeps, we demonstrated the

entirety of AES encryption in C. The software tasks, such as the Python implementation of AES

encryption and decryption, REST API functionality, and a working frontend website were

completed as scheduled for Milestone 2. The remaining third of the project, therefore, was

focused on implementing the communication between the processing system and the FPGA.

Pedicini and Lombardo 26

While these adjustments led to significant deviations from our initial project timeline, we

adhered fairly well to the alternate timeline. There were minor setbacks throughout the semester

due to illness or outside commitments that contributed to delayed progress on a weekly level, but

both group members made consistent progress toward the redefined goals.

Figure 14: Proposed GANTT chart for the AES hardware acceleration project.

The tasks of this project were distributed evenly between the group members. Gianna was

responsible for the following software-oriented tasks: creating and designing the website

frontend, developing the website backend, implementing the REST API, completing the timing

analysis, and developing the Python implementation of AES encryption and decryption in the

Jupyter Notebook on the PYNQ-Z2 board. Isabella was responsible for the following

Pedicini and Lombardo 27

hardware-oriented tasks: developing and packaging the C implementation of AES in Vitis HLS;

wiring together the ZYNQ7 Processing System and Reset, the AES IP Block, and the various

AXI components to develop the overlay for the PYNQ-Z2 board; and developing the Python

code for the AXI4 communication stream between the Jupyter Notebook and the FPGA. Both

group members contributed to the formal proposal, final presentation, and final report equally,

and both group members contributed equally to the testing and debugging process.

Pedicini and Lombardo 28

References

“Advanced Encryption Standard.” Wikipedia, Wikimedia Foundation, 17 Mar. 2025,

en.wikipedia.org/wiki/Advanced_Encryption_Standard.

“AES Key Schedule.” Wikipedia, Wikimedia Foundation, 26 Apr. 2025,

en.wikipedia.org/wiki/AES_key_schedule.

Awati, Rahul. “Advanced Encryption Standard (AES).” TechTarget, 2022,

https://www.techtarget.com/searchsecurity/definition/Advanced-Encryption-Standard.

“Cost of a Data Breach Report 2024.” IBM Security and Ponemon Institute, 2024,

https://www.ibm.com/reports/data-breach.

Dandass, Yoginder, et al. “Hardware Acceleration of AES Using Field Programmable Gate

Arrays.” Proceedings of the 2008 IEEE SoutheastCon, IEEE, 2008, pp. 479–484.

https://doi.org/10.1109/SECON.2008.4494322.

Esslinger, Bernhard. “Teaching Cryptology at All Levels Using CrypTool.” Proceedings of the

15th Colloquium for Information Systems Security Education, 2011,

https://www.cryptool.org/media/publications/journals/teachingcryptool.pdf.

Pedicini and Lombardo 29

Appendices

Appendix A: Helpful Links for Demonstration

Github Link: https://github.com/giannaped8/AES_FPGA.git

Video Demonstration: Full AES Encryption Website Walk Through

Appendix B: Website Screenshots

Figure B1: Home Page (Entire page)

https://github.com/giannaped8/AES_FPGA.git
https://drive.google.com/file/d/1uNKpKPyvdlADP8ymgMc35O1hgxhck-LP/view?usp=sharing

Pedicini and Lombardo 30

Figure B2: About Page (Top Portion of Page)

Figure B3: Learn Page (Top Portion of Page)

Pedicini and Lombardo 31

Figure B4: Demo Page (Entire Page)

Figure B5: History Page (Top Portion of Page)

Pedicini and Lombardo 32

Appendix C: Additional GANTT Chart Images

Figure C1: The “Milestone 1” portion of the proposed project GANTT chart

Figure C2: The “Milestone 2” portion of the proposed project GANTT chart

Pedicini and Lombardo 33

Figure C3: The “Final Deliverables and Reports” portion of the proposed project GANTT chart

Appendix D: S-Box Values

Figure D1: The S-Box values.

